1,239 research outputs found

    Effects of using different plasmonic metals in metal/dielectric/metal subwavelength waveguides on guided dispersion characteristics

    Full text link
    The fundamental guided dispersion characteristics of guided light in a subwavelength dielectric slit channel embedded by two different plasmonic metals are investigated when varying the gap width. As a result, an overall and salient picture of the guided dispersion characteristics is obtained over a wide spectrum range below and above the plasma frequencies of the two different plasmonic metals, which is important preliminary information for analyzing this type of subwavelength waveguide. In particular, the effects of using two different metals on the guided mode dispersions are emphasized in comparison with the effects of using the same plasmonic metal cladding.Comment: 13 pages, 3 figures, typos corrected, reference added, text modifie

    Metastable states of surface plasmon vacuum near the interface between metal and nonlinear dielectric

    Full text link
    Zero-point fluctuations of surface plasmon modes near the interface between metal and nonlinear dielectric are shown to produce a thin layer of altered dielectric constant near the interface. This effect may be sufficiently large to produce multiple metastable states of the surface plasmon vacuum.Comment: 4 pages, 2 figure

    Nondispersive and dispersive collective electronic modes in carbon nanotubes

    Full text link
    We propose a new theoretical interpretation of the electron energy-loss spectroscopy results of Pichler {\it et al.} on bulk carbon nanotube samples. The experimentally found nondispersive modes have been attributed by Pichler {\it et al.} to interband excitations between localized states polarized perpendicular to the nanotube axis. This interpretation has been challenged by a theorist who attributed the modes to optical plasmons carrying nonzero angular momenta. We point out that both interpretations suffer from difficulties. From our theoretical results of the loss functions for individual carbon nanotubes based on a tight-binding model, we find that the nondispersive modes could be due to collective electronic modes in chiral carbon nanotubes, while the observed dispersive mode should be due to collective electronic modes in armchair and zigzag carbon nanotubes. Momentum-dependent electron energy-loss experiments on individual carbon nanotubes should be able to confirm or disprove this interpretation decisively.Comment: 4 pages, 3 figure

    Quantitative Determination of Enhanced and Suppressed Transmission through Subwavelength Slit Arrays in Silver Films

    Get PDF
    Measurement of the transmitted intensity from a coherent monomode light source through a series of subwavelength slit arrays in Ag films, with varying array pitch and number of slits, demonstrate enhancement (suppression) by as much as a factor of 6 (9) when normalized to that of an isolated slit. Pronounced minima in the transmitted intensity were observed at array pitches corresponding to lambda_SPP, 2lambda_SPP, and 3lambda_SPP where lambda_SPP is the wavelength of the surface plasmon polariton (SPP). Increasing the number of slits to more than four does not increase appreciably the per-slit transmission intensity. These results are consistent with a model for interference between SPPs and the incident wave that fits well the measured transmitted intensity profile.Comment: Figure 4 update

    Signal propagation and spark mitigation in resistive strips read-outs

    Full text link
    MicroPattern Gaseous Detectors (MPGD) made of resistive strips have raised as a promising technology for the protection against spark processes having place in the gaseous chamber. The reproduction of the signals and its propagation through the resistive foil is mandatory to better understand its behavior and optimize the key parameters which might depend on the application requirements. In this work it will be presented a resistive-strip model and the charge diffusion through the resistive strip for different model parameters, such as the strip linear resistivity and capacitance, together with the advantages and/or disadvantages of this type of technology.Comment: Proceedings of the PSD9 conferenc

    Plasmons in electrostatically doped graphene

    Get PDF
    Graphene has raised high expectations as a low-loss plasmonic material in which the plasmon properties can be controlled via electrostatic doping. Here, we analyze realistic configurations, which produce inhomogeneous doping, in contrast to what has been so far assumed in the study of plasmons in nanostructured graphene. Specifically, we investigate backgated ribbons, co-planar ribbon pairs placed at opposite potentials, and individual ribbons subject to a uniform electric field. Plasmons in backgated ribbons and ribbon pairs are similar to those of uniformly doped ribbons, provided the Fermi energy is appropriately scaled to compensate for finite-size effects such as the divergence of the carrier density at the edges. In contrast, the plasmons of a ribbon exposed to a uniform field exhibit distinct dispersion and spatial profiles that considerably differ from uniformly doped ribbons. Our results provide a road map to understand graphene plasmons under realistic electrostatic doping conditions.Comment: 9 pages, 9 figure

    Large tunable photonic band gaps in nanostructured doped semiconductors

    Full text link
    A plasmonic nanostructure conceived with periodic layers of a doped semiconductor and passive semiconductor is shown to generate spontaneously surface plasmon polaritons thanks to its periodic nature. The nanostructure is demonstrated to behave as an effective material modeled by a simple dielectric function of ionic-crystal type, and possesses a fully tunable photonic band gap, with widths exceeding 50%, in the region extending from mid-infra-red to Tera-Hertz.Comment: 6 pages, 4 figures, publishe

    Plasmonic Enhancement of Emission from Si-nanocrystals

    Full text link
    Plasmonic gratings of different periodicities are fabricated on top of Silicon nanocrystals embedded in Silicon Dioxide. Purcell enhancements of up to 2 were observed, which matches the value from simulations. Plasmonic enhancements are observed for the first three orders of the plasmonic modes, with the peak enhancement wavelength varying with the periodicity. Biharmonic gratings are also fabricated to extract the enhanced emission from the first order plasmonic mode, resulting in enhancements with quality factors of up to 16.Comment: 4 pages, 5 figures added explanation of low purcell enhancement updated figure

    Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array

    Get PDF
    This work confirms that not only surface plasmons but many other kinds of electromagnetic eigenmodes should be considered in explaining the values of the transmittivity through a slab bearing a two-dimensional periodic corrugation. Specifically, the role of Brewster-Zennek modes appearing in metallic films exhibiting regions of weak positive dielectric constant. It is proposed that these modes play a significant role in the light transmission in a thin chromium film perforated with normal cylindrical holes, for appropriate lattice parameters.Comment: 5 pages, 4 figures. Published versio

    Perfect coupling of light to surface plasmons with ultra-narrow linewidths

    Full text link
    We examine the coupling of electromagnetic waves incident normal to a thin silver film that forms an oscillatory grating embedded between two otherwise uniform, semi-infinite half spaces. Two grating structures are considered, in one of which the mid point of the Ag film remains fixed whereas the thickness varies sinusoidally, while in the other the mid point oscillates sinusoidally whereas the film thicknesses remains fixed. On reducing the light wavelength from the long wavelength limit, we encounter signatures in the transmission, T, and reflection, R, coefficients associated with: i) the short-range surface plasmon mode, ii) the long-range surface plasmon mode, and iii) electromagnetic diffraction tangent to the grating. The first two features can be regarded as generalized (plasmon) Wood's anomalies whereas the third is the first-order conventional (electromagnetic) Wood's anomaly. The energy density at the film surface is enhanced for wavelengths corresponding to these three anomalies, particularly for the long range plasmon mode in thin films. When exciting the silver film with a pair of waves incident from opposite directions, we find that by adjusting the grating oscillation amplitude and fixing the relative phase of the incoming waves to be even or odd, T+R can be made to vanish for one or the other of the plasmon modes; this corresponds to perfect coupling (impedance matching in the language of electrical engineering) between the incoming light and these modes.Comment: 13 pages, 5 figures. accepted J. Chem. Phy
    corecore